Limits of Geometries

نویسندگان

  • Daryl Cooper
  • Jeffrey Danciger
چکیده

A geometric transition is a continuous path of geometric structures that changes type, meaning that the model geometry, i.e. the homogeneous space on which the structures are modeled, abruptly changes. In order to rigorously study transitions, one must define a notion of geometric limit at the level of homogeneous spaces, describing the basic process by which one homogeneous geometry may transform into another. We develop a general framework to describe limits of geometries as sub-geometries of a larger ambient geometry. Specializing to the setting of real projective geometry, we classify the geometric limits of any sub-geometry whose structure group is a symmetric subgroup of the projective general linear group. As an application, we classify all limits of three-dimensional hyperbolic geometry inside of projective geometry, finding Euclidean, Nil, and Sol geometry among the limits. We prove, however, that the other Thurston geometries, in particular H × R and S̃L2 R, do not embed in any limit of hyperbolic geometry in this sense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbifolds, Penrose Limits and Supersymmetry Enhancement

We consider supersymmetric PP-wave limits for different N = 1 orbifold geometries of the five sphere S5 and the five dimensional Einstein manifold T1,1. As there are several interesting ways to take the Penrose limits, the PP-wave geometry can be either maximal supersymmetric N = 4 or half-maximal supersymmetric N = 2. We discuss in detail the cases AdS5 × S/Z3, AdS5 × S/(Zm × Zn) and AdS5 × T/...

متن کامل

Deformation Quantization of Pseudo Symplectic(Poisson) Groupoids

We introduce a new kind of groupoid—a pseudo étale groupoid, which provides many interesting examples of noncommutative Poisson algebras as defined by Block, Getzler, and Xu. Following the idea that symplectic and Poisson geometries are the semiclassical limits of the corresponding quantum geometries, we quantize these noncommutative Poisson manifolds in the framework of deformation quantizatio...

متن کامل

Ultrarelativistic limits of boosted dilaton black holes

We investigate the ultrarelativistic limits of dilaton black holes, black pbranes (strings), multi-centered dilaton black hole solutions and black p-brane (string) solutions when the boost velocity approaches the speed of light. For dilaton black holes and black p-branes (boost is along the transverse directions), the resulting geometries are gravitational shock wave solutions generated by a si...

متن کامل

Dual geometries for a set of 3-charge microstates

We construct a set of extremal D1-D5-P solutions, by taking appropriate limits in a known family of nonextremal 3-charge solutions. The extremal geometries turn out to be completely smooth, with no horizon and no singularity. The solutions have the right charges to be the duals of a family of CFT microstates which are obtained by spectral flow from the NS vacuum. [email protected], math...

متن کامل

CMBFAST for spatially closed universes

We extend the cosmological linear perturbation theory code CMBFAST to closed geometries. This completes the implementation of CMBFAST to all types of geometries and allows the user to perform an unlimited search in the parameter space of models. This will be specially useful for placing confidence limits on cosmological parameters from existing and future data. We discuss some of the technical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015